Jenbacher type 6

cutting-edge technology

Continuously refined based on our extensive experience, the Jenbacher type 6 engines are reliable, advanced products serving the 1.8 to 3 MW power range. Its 1,500 rpm engine speed results in a high power density and low installation costs. The type 6 pre-combustion chamber achieves maximum efficiency with low emissions. Proven design and optimized components enable a service life of 60,000 operating hours before the first major overhaul.

reference installations

model, plant

J612 GS

Beretta, industry; Gardone, Italy

key technical data

ruei	Naturai gas
Engine type	1 x JMS 612 GS-N.L
Electrical output	1,457 kW
Thermal output	1,704 kW
Commissioning	December 1998

description

The generated electricity covers the entire electricity requirement of the Beretta factory, while the heat is used for the production process. By using our cogeneration system, Beretta was able to reduce the energy supply costs for the factory by 30%.

J616 GS

Mussafah Industrial City, residential area; Abu Dhabi, UAE

Three Jenbacher generator sets supply power generation for continuous operation of compressor chillers to provide chilled water for cooling to a residential area that incorporates apartments, shopping centres, mosques, a police station, and a cinema complex.

J616 GS

Van der Arend Roses; Maasland, The Netherlands

 The Jenbacher cogeneration systems provide power for artificial lighting, heat and CO_2 to increase the greenhouse rose production capabilities. The CO_2 produced from the exhaust gas of the engines is used for fertilization in the greenhouses.

J620 GS

Biomass power plant; Güssing, Austria Fuel Wood gas
Engine type 1 x JMS 620 GS-S.L
Electrical output 1,964 kW
Thermal output 2,490 kW
(district heating 70°C/90°C)
Commissioning April 2002

The wood gas produced and cleaned in a fluidized bed/steam reactor is converted into heat and power in the Jenbacher cogeneration plant and forms an important component in an innovative project aimed at meeting 100% of the region's energy needs from renewable sources.

technical features

feature	description	advantages
Four-valve cylinder head	Centrally located purged pre-combustion chamber, developed using advanced calculation and simulation methods (CFD)	Minimized charge-exchange lossesHighly efficient and stable combustionOptimal ignition conditions
Heat recovery	The oil heat exchanger can be specified as a two-stage plate heat exchanger	- Maximum thermal efficiency, even at high and fluctuating return temperatures
Air/fuel mixture charging	Fuel gas and combustion air are mixed at low pressure before entering the turbocharger	- Main gas supply with low gas pressure - Mixture homogenized in the turbocharger
Pre-combustion chamber	The ignition energy of the spark plug is amplified in the pre-combustion chamber	- Highest efficiency - Lowest NOx emission values - Stable and reliable combustion
Special gas mixer	Specific version for special gases with low calorific values	- Trouble-free operation with special gases with large calorific value differences

technical data

Configuration			V 60°		
Bore (mm)			190		
Stroke (mm)			220		
Displacement/cylinder (lit)			6.24		
Speed (rpm) 1,500 (50					
		1,500 with g	earbox (60 Hz)		
Mean piston speed (m/s)			11 (1,500 rpm)		
Scope of supply	Genera	itor set, cogene	eration system		
Applicable gas types	sewage gas.	flare gas, biogo Special gases (gas, wood gas,	e.g., coal mine		
Engine type	J612 GS	J616 GS	J620 GS		
No. of cylinders	12	16	20		
Total displacement (lit)	74.9	99.8	124.8		

and the second second second				
Dimensions I	$\times W \times$	hΙ	mm)	

Generator set	J612 G	S 7.	600 x 2,200 x 2,800
	J616 G	S 8,	300 x 2,200 x 2,800
	J620 G	S 8,	900 x 2,500 x 2,800
Cogeneration system	J612 G	S 7,	600 × 2,200 × 2,800
	J616 G	S 8,	300 x 2,200 x 2,800
	J620 G	S 8,	900 x 2,500 x 2,800
Weights empty (kg) ₁			
	J612 GS	J616 GS	J620 GS
Generator set	19,100	22,400	28,000
Cogeneration system	19,600	22,900	28,600

¹⁾ Dimensions and weights are valid for 50 Hz applications.

outputs and efficiencies

Natural aas	1.500 rpm 50 Hz	1,500 rpm 60 Hz
Nuturur yus	1,300 [DITI] 30 [12	1,300 10111 00 112

NOx <	Туре	Pel (kW) ₂	ηel (%)	Pth (kW) ₃	η th (%)	ηtot (%)	Pel (kW) ₂	η el (%)	Pth (kW) ₃	η th (%)	η tot (%)
500 mg/Nm ³	612	1,820	43.3	1,792	42.7	86.0	1,803	42.9	1,814	43.2	86.1
	616	2,433	43.4	2,399	42.8	86.2	2,390	42.6	2,431	43.4	86.0
	620	3,041	43.0	3,020	42.7	85.7	2,994	42.3	3,062	43.3	85.6
250 mg/Nm ³	612	1,820	42.6	1,843	43.2	85.8	1,803	42.2	1,865	43.7	85.9
	616	2,433	42.9	2,420	42.7	85.6	2,390	42.2	2,452	43.3	85.5
	620	3,041	42.3	3,070	42.7	85.0	2,994	41.6	3,112	43.3	84.9

1,500 rpm | 50 Hz 1,500 rpm | 60 Hz Biogas

NOx <	Туре	Pel (kW) ₂	ηel (%)	Pth (kW) ₃	η th (%)	η tot (%)	Pel (kW) ₂	η el (%)	Pth (kW) ₃	η th (%)	ηtot (%)
500 mg/Nm ³	612	1,458	39.8	1,648	45.0	84.8	1,433	39.1	1,671	45.6	84.7
	616	1,946	39.8	2,196	45.0	84.8	1,914	39.2	2,220	45.4	84.6
	620	2,425	39.7	2,746	45.0	84.7	2,388	39.1	2,779	45.5	84.6
250 mg/Nm ³	612	1,458	39.2	1,645	44.2	83.4	1,433	38.5	1,668	44.8	83.3
	616	1,946	39.2	2,194	44.2	83.4	1,914	38.6	2,218	44.7	83.3
	620	2,425	39.1	2,743	44.2	83.3	2,388	38.5	2,776	44.7	83.2

number 80 for natural gas
3) Total heat output with a tolerance of +/- 8%, exhaust gas outlet temperature 120°C, for biogas exhaust gas outlet temperature 180°C

All data according to full load and subject to technical development and modification.